
4 Static Body Stresses

4.1 Introduction

Once the external loads applied to a member have been determined (see Chapter 2),

the next item of interest is often the resulting stresses. This chapter is concerned with

body stresses, existing within the member as a whole, as distinguished from surface
or contact stresses in localized regions where external loads are applied. This chap-

ter is also concerned with stresses resulting from essentially static loading, as

opposed to stresses caused by impact or fatigue loading. (Impact, fatigue, and sur-

face stresses are considered in Chapters 7, 8, and 9, respectively.)

As noted in Section 3.2, this book follows the convention of reserving the cap-

ital letter S for material strength (i.e., Su for ultimate strength, Sy for yield strength,

etc.) and using Greek letters s and t for normal and shear stress, respectively.

4.2 Axial Loading

Figure 4.1 illustrates a case of simple tension. If external loads P are reversed in

direction (i.e., have negative values), the bar is loaded in simple compression. In

either case, the loading is axial. Small block E represents an arbitrarily located infin-

itesimally small element of material that is shown by itself in Figures 4.1b and c. Just

as equilibrium of the bar as a whole requires the two external forces P to be equal,

equilibrium of the element requires the tensile stresses acting on the opposite pair of

elemental faces to be equal. Such elements are commonly shown as in Figure 4.1c,

where it is important to remember that the stresses are acting on faces perpendicu-
lar to the paper. This is made clear by the isometric view in Figure 4.1b.

Figure 4.1d illustrates equilibrium of the left portion of the link under the action

of the external force at the left and the tensile stresses acting on the cutting plane.

From this equilibrium we have perhaps the simplest formula in all of engineering:

(4.1)

It is important to remember that although this formula is always correct as an expres-

sion for the average stress in any cross section, disastrous errors can be made by

naively assuming that it also gives the correct value of maximum stress in the sec-

tion. Unless several important requirements are fulfilled, the maximum stress will be

s = P/A
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132 Chapter 4 ■ Static Body Stresses

greater than P/A, perhaps by several hundred percent. The maximum stress is equal

to P/A only if the load is uniformly distributed over the cross section. This requires

the following.

1. The section being considered is well removed from the loaded ends. Figure 4.1e
shows “lines of force flow” to illustrate the general nature of the stress distrib-

ution in cross sections at various distances from the ends. A substantially uni-

form distribution is reached at points about three diameters from the end fittings

in most cases.

2. The load is applied exactly along the centroidal axis of the bar. If, for example, the

loads are applied a little closer to the top, the stresses will be highest at the top of

the bar and lowest at the bottom. (Looking at it another way, if the load is eccentric

by amount e, a bending moment of intensity Pe is superimposed on the axial load.)

3. The bar is a perfect straight cylinder, with no holes, notches, threads, internal

imperfections, or even surface scratches. Any of these give rise to stress concen-
tration, which will be dealt with in Section 4.12.
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FIGURE 4.1
Axial loading.
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4.3 ■ Direct Shear Loading 133

4. The bar is totally free of stress when the external loads are removed. This is fre-

quently not the case. The manufacture of the part and its subsequent mechanical

and thermal loading history may have created residual stresses, as described in

Sections 4.14, 4.15, and 4.16.

5. The bar comes to stable equilibrium when loaded. This requirement is violated

if the bar is relatively long and loaded in compression. Then it becomes elasti-

cally unstable, and buckling occurs. (See Sections 5.10 through 5.15.)

6. The bar is homogeneous. A common example of non homogeneity is a com-

posite material, such as glass or carbon fibers in a plastic matrix. Here the

matrix and the fibers carry the load redundantly (see Section 2.5), and the stiffer

material (i.e., having the higher modulus of elasticity) is the more highly

stressed.

Figure 4.2 shows an example in which unexpected failure can easily result from

the naive assumption that the calculation of axial stress involves no more than “P/A.”

Suppose that the load P is 600 N and that six identical welds are used to attach the

bracket to a fixed flat surface. The average load per weld would be, of course, 100 N.

However, the six welds represent redundant force paths of very different stiffnesses.

The paths to welds 1 and 2 are much stiffer than the others; hence, these two welds

may carry nearly all the load. A much more uniform distribution of load among the

six welds could be obtained by adding the two side plates shown dotted in

Figure 4.2b, for these would stiffen the force paths to welds 3 to 6.

At this point one might despair of ever using P/A as an acceptable value of maxi-

mum stress for relating to the strength properties of the material. Fortunately, such is not

the case. The student should acquire increasing insight for making “engineering judg-

ments” relative to these factors as his or her study progresses and experience grows.

4.3 Direct Shear Loading

Direct shear loading involves the application of equal and opposite forces so nearly

colinear that the material between them experiences shear stress, with negligible

bending. Figure 4.3 shows a bolt serving to restrain relative sliding of two plates sub-

jected to opposing forces P. With plate interface friction neglected, the bolt cross

section of area A (marked ) experiences direct shear stress of average value

(4.2)t = P/A
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FIGURE 4.2
Tensile-loaded T bracket
attached by six welds.
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134 Chapter 4 ■ Static Body Stresses

If the nut in Figure 4.3 is tightened to produce an initial bolt tension of P, the

direct shear stresses at the root of the bolt threads (area ), and at the root of the nut

threads (area ), have average values in accordance with Eq. 4.2. The thread root

areas involved are cylinders of a height equal to the nut thickness.1 If the shear stress

is excessive, shearing or “stripping” of the threads occurs in the bolt or nut, which-

ever is weaker.

Similar examples of direct shear occur in rivets, pins, keys, splines, and so on.

Moreover, direct shear loading is commonly used for cutting, as in ordinary house-

hold shears or scissors, paper cutters, and industrial metal shears.

Figure 4.4 shows a hinge pin loaded in double shear, where the load P is carried

in shear through two areas in parallel; hence, the area A used in Eq. 4.2 is twice the

cross-sectional area of the pin. Examples of pins loaded in double shear are com-

mon: cotter pins used to prevent threaded nuts from rotating (as with automobile

wheel bearing retaining nuts), shear pins used to drive boat propellers (the pin fails

in double shear when the propeller strikes a major obstruction, thus protecting more

expensive and difficult-to-replace members), transverse pins used to hold telescop-

ing tubular members in a fixed position, and many others.

Direct shear loading does not produce pure shear (as does torsional loading),

and the actual stress distribution is complex. It involves fits between the mating

members and relative stiffnesses. The maximum shear stress will always be some-

what in excess of the P/A value given by Eq. 4.2. In the design of machine and

structural members, however, Eq. 4.2 is commonly used in conjunction with appro-

priately conservative values of working shear stress. Furthermore, to produce total

shear fracture of a ductile member, the load must simultaneously overcome the

shear strength in every element of material in the shear plane. Thus, for total frac-

ture, Eq. 4.2 would apply, with t being set equal to the ultimate shear strength, Sus .
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FIGURE 4.3
Bolted joint, showing three areas of
direct shear.

PP

FIGURE 4.4
Direct shear loading (showing failure in
double shear).

1 Strictly true only for threads with a sharp “V” profile. Shear areas for standard threads are a little less.

See Section 10.4.5.
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4.4 ■ Torsional Loading 135

4.4 Torsional Loading

Figure 4.5 illustrates torsional loading of a round bar. Note that the direction of the

applied torque (T) determines that the left face of element E is subjected to a down-
ward shear stress, and the right face to an upward stress. Together, these stresses

exert a counterclockwise couple on the element that must be balanced by a corre-

sponding clockwise couple, created by shear stresses acting on the top and bottom

faces. The state of stress shown on element E is pure shear.

The sign convention for axial loading (positive for tension, negative for com-

pression) distinguishes between two basically different types of loading: compression

can cause buckling whereas tension cannot, a chain or cable can withstand tension but

not compression, concrete is strong in compression but weak in tension, and so on.

The sign convention for shear loading serves no similar function—positive and neg-

ative shear are basically the same—and the sign convention is purely arbitrary. Any

shear sign convention is satisfactory so long as the same convention is used through-

out any one problem. This book uses the convention of positive-clockwise; that is, the

shear stresses on the top and bottom faces of element E (in Figure 4.5) tend to rotate

the element clockwise, hence are regarded as positive. The vertical faces are subjected

to counterclockwise shear, which is negative.

For a round bar in torsion, the stresses vary linearly from zero at the axis to a

maximum at the outer surface. Strength of materials texts contain formal proofs that

the shear stress intensity at any radius r is

(4.3)

Of particular interest, of course, is the stress at the surface, where r is equal to the

outside radius of the bar and J is the polar moment of inertia of the cross section,

which is equal to pd4/32 for a solid round bar of diameter d (see Appendix B-1).

Simple substitution of this expression in Eq. 4.3 gives the equation for surface tor-

sional stress in a solid round bar of diameter d:

(4.4)tmax = 16T/pd3

t = Tr/J
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Isometric view

(b)
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E E

Enlarged view of
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(c)

Direct view of
element E

(d)
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Negative
shear

Negative
shear

Shear sign
convention

FIGURE 4.5
Torsional loading of a round bar.
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136 Chapter 4 ■ Static Body Stresses

The corresponding equation for torsional stress in a hollow round bar (i.e.,

round tubing or pipe) follows from substitution of the appropriate equation for polar

moment of inertia (see Appendix B-1).

The important assumptions associated with Eq. 4.3 are

1. The bar must be straight and round (either solid or hollow), and the torque must

be applied about the longitudinal axis.

2. The material must be homogeneous and perfectly elastic within the stress range

involved.

3. The cross section considered must be sufficiently remote from points of load

application and from stress raisers (i.e., holes, notches, keyways, surface

gouges, etc.).

For bars of nonround cross section, the foregoing analysis gives completely
erroneous results. This can be demonstrated for rectangular bars by marking an ordi-

nary rubber eraser with small square elements 1, 2, and 3 as shown in Figure 4.6.

When the eraser is twisted about its longitudinal axis, Eq. 4.3 implies that the high-

est shear stress would be at the corners (element 2) because these are farthest from

the neutral axis. Similarly, the lowest surface stress should be at element 1 because

it is closest to the axis. Observation of the twisted eraser shows exactly the oppo-

site—element 2 (if it could be drawn small enough) does not distort at all, whereas

element 1 experiences the greatest distortion of any element on the entire surface!

A review of a formal derivation of Eq. 4.3 reminds us of the basic assumption

that what are transverse planes before twisting remain planes after twisting. If such

a plane is represented by drawing line “A” on the eraser, obvious distortion occurs

upon twisting; therefore, the assumption is not valid for a rectangular section.

The equilibrium requirement of corner element 2 makes it clear that this ele-

ment must have zero shear stress: (1) the “free” top and front surfaces do not contact

anything that could apply shear stresses; (2) this being so, equilibrium requirements

prevent any of the other four surfaces from having shear. Hence, there is zero shear

stress along all edges of the eraser.

Torsional stress equations for nonround sections are summarized in references

such as [8]. For example, the maximum shear stress for a rectangular section, as

shown in Figure 4.6, is

(4.5)tmax = T(3a + 1.8b)/a2
 b2

(a)

T

(b)

2

Torque axis

Zero shear stress exists
along all edges.

Maximum shear stress exists
along this line.

Enlarged view of
element 2

a

T

b

Line "A"

3

21

Top

Side Fron
t

FIGURE 4.6
Rubber eraser marked
to illustrate torsional
deformation (hence
stresses) in a
rectangular bar.
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4.5 ■ Pure Bending Loading, Straight Beams 137

4.5 Pure Bending Loading, Straight Beams

Figures 4.7 and 4.8 show beams loaded only in bending; hence the term, “pure bend-

ing.” From studies of the strength of materials, the resulting stresses are given by the

equation

(4.6)

where I is the moment of inertia of the cross section with respect to the neutral axis,

and y is the distance from the neutral axis. Bending stresses are normal stresses, the

same as axial stresses. Sometimes the two are distinguished by using appropriate

subscripts, as sb for bending stresses and sa for axial stresses. For the bending

shown in Figures 4.7 and 4.8, tensile stresses exist above the neutral axis of the sec-

tion (or above the neutral surface of the beam), and compressive stresses below.

Maximum values are at the top and bottom surfaces.

Equation 4.6 applies to any cross section (such as the several that are illustrated),

with these important limitations.

s = My/I

(a)

�max

(b) (c)

Partial beam in equilibrium

Entire beam in equilibrium

Neutral
surface

Transverse
cutting plane

Neutral
bending
axis and

centroidal
axis Typical cross sections

M M

M
c

c

y

Neutral (bending) surface

FIGURE 4.7
Pure bending of
sections with two axes
of symmetry.
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(b) (c)

Partial beam in equilibrium

Entire beam in equilibrium

Neutral
surface

CG
CG CG CG

Typical cross sections

Neutral bending axis
and centroidal axis

M M

M

c
y

Neutral (bending) surface

FIGURE 4.8
Pure bending of sections
with one axis of symmetry.
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138 Chapter 4 ■ Static Body Stresses

1. The bar must be initially straight and loaded in a plane of symmetry.

2. The material must be homogeneous, and all stresses must be within the elas-

tic range.

3. The section for which stresses are calculated must not be too close to significant

stress raisers or to regions where external loads are applied.

Figure 4.7 shows a bending load applied to a beam of cross section having two

axes of symmetry. Note that the cutting-plane stresses marked smax are obtained

from Eq. 4.6 by substituting c for y, where c is the distance from the neutral axis to

the extreme fiber. Often the section modulus Z (defined as the ratio I/c) is used, giv-

ing the equation for maximum bending stress as

(4.7)

For a solid round bar, I = pd4/64, c = d/2, and Z = pd3/32. Hence, for this case

(4.8)

Properties of various cross sections are given in Appendix B-1.

Figure 4.8 shows bending of sections having a single axis of symmetry, and where

the bending moment lies in the plane containing the axis of symmetry of each cross

section. At this point the reader will find it profitable to spend a few moments verify-

ing that the offset stress distribution pattern shown is necessary to establish equilib-

rium in Figure 4.8b (i.e., dA = 0, and dA y = 0).

4.6 Pure Bending Loading, Curved Beams

When initially curved beams are loaded in the plane of curvature, the bending stresses

are only approximately in accordance with Eqs. 4.6 through 4.8. Since the shortest

(hence stiffest) path along the length of a curved beam is at the inside surface, a con-

sideration of the relative stiffnesses of redundant load paths suggests that the stresses

at the inside surface are greater than indicated by the straight-beam equations.

Figure 4.9 illustrates that this is indeed the case. This figure also shows that equilibrium

requirements cause the neutral axis to shift inward (toward the center of curvature) an

amount e, and the stress distribution to become hyperbolic. These deviations from

straight-beam behavior are important in severely curved beams, such as those com-

monly encountered in C-clamps, punch press and drill press frames, hooks, brackets,

and chain links.

To understand more clearly the behavior pattern shown in Figure 4.9c, let us

develop the basic curved-beam stress equations. With reference to Figure 4.10, let

abcd represent an element bounded by plane of symmetry ab (which does not

change direction when moment M is applied) and plane cd. Moment M causes

plane cd to rotate through angle df to new position c¿d¿. (Note the implied

assumption that plane sections remain plane after loading.) Rotation of this plane

is, of course, about the neutral bending axis, displaced an as-yet-unknown dis-

tance e from the centroidal axis.

©  M = M + ©  s©  F = ©  s

smax = 32M/pd3

smax = M/Z = Mc/I
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4.6 ■ Pure Bending Loading, Curved Beams 139

(a)

Initially straight beam segment

(b)

(c)

Initially curved beam segment
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Hyperbolic stress distribution with
increased stress at inner surface
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Typical cross section
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Neutral surface
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Neutral surface
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surface
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FIGURE 4.9
Effect of initial curvature, pure bending of sections with one axis of symmetry.
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FIGURE 4.10
Curved beam in bending.

The strain on the fiber shown at distance y from the neutral axis is

(a)

For an elastic material, the corresponding stress is

(b)

Note that this equation gives a hyperbolic distribution of stress, as illustrated in

Figure 4.9c.

s =

Ey df

(rn + y)f

� =

y df

(rn + y)f
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140 Chapter 4 ■ Static Body Stresses

Equilibrium of the beam segment on either side of plane cd (Figure 4.10)

requires

and, since E Z 0,

(c)

(d)

The quantity y2/(rn + y) in Eq. d can be replaced by y - rny/(rn + y), giving

(e)

The second integral in Eq. e is equal to zero because of Eq. c. The first integral

is equal to eA. (Note that this integral would be equal to zero if y were measured

from the centroidal axis. Since y is measured from an axis displaced distance e from

the centroid, the integral has a value of eA.)

Substituting the preceding expressions into Eq. e gives

(f)

Substituting Eq. f into Eq. b gives

(g)

Substituting y = -ci and y = co in order to find maximum stress values at the

inner and outer surfaces, we have

The signs of these equations are consistent with the compressive and tensile

stresses produced in the inner and outer surfaces of the beam in Figure 4.10, where

 so =

Mco

eA(rn + co)
=

Mco

eAro

 si =

-Mci

eA(rn - ci)
=

-Mci

eAri

s =

My

eA(rn + y)

M =

E df

f
 eA or E =

Mf

df eA

M =

E df

f
 ¢
L
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L
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E df
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= M
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4.6 ■ Pure Bending Loading, Curved Beams 141

the direction of moment M was chosen in the interest of clarifying the analysis. More

commonly, a positive bending moment is defined as one tending to straighten an ini-

tially curved beam. In terms of this convention,

(4.9)

Before we use Eq. 4.9, it is necessary to develop an equation for distance e.

Beginning with the force equilibrium requirement, Eq. c, and substituting r for

rn + y, we have

But y = r - rn ; hence,

or

Now dA = A; hence,

(h)

Distance e is equal to hence,

(4.10)

Stress values given by Eq. 4.9 differ from the straight-beam “Mc/I” value by a

curvature factor, K. Thus, using subscripts i and o to denote inside and outside fibers,

respectively, we have

(4.11)

where c is defined in Figure 4.8.

si = Ki Mc/I = Ki M/Z and s0 = -Ko Mc/I = -Ko M/Z

e = r -

A

1
 

 

 dA/r

r - rn ;

A = rn 

L

 

 

 dA/r or rn =

A

1
 

 

 dA/r

1
 

 

L

 

 

 dA -

L

 

 

 

rn dA
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= 0
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(r - rn) dA
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= 0
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y dA
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= 0

si = +  

Mci

eAri
 and so = -  

Mco

eAro
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142 Chapter 4 ■ Static Body Stresses

Values of K for beams of representative cross sections and various curvatures

are plotted in Figure 4.11. This illustrates a common rule of thumb: “If is at least

ten times inner fiber stresses are usually not more than 10 percent above the Mc/I
value.” Values of Ko , Ki , and e are tabulated for several cross sections in [8]. Of

course, any section can be handled by using Eqs. 4.9 and 4.10. If necessary, the inte-

gral in Eq. 4.10 can be evaluated numerically or graphically. Use of these equations

is illustrated by the following sample problem.

SAMPLE PROBLEM 4.1 Bending Stresses in Straight and Curved Beams

A rectangular beam has an initial curvature equal to the section depth h, as shown

in Figure 4.12. How do its extreme-fiber-bending stresses compare with those of an

otherwise identical straight beam?

SOLUTION

Known: A straight beam and a curved beam of given cross section and initial cur-

vature are loaded in bending.

Find: Compare the bending stresses between the straight beam and the curved beam.

r
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FIGURE 4.11
Effect of curvature on bending stresses, representative cross sections [8].
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4.6 ■ Pure Bending Loading, Curved Beams 143

Schematic and Given Data:

M

M M

M

h

b

h

h
2

Centroidal axis

CG
r = h

c =

dA = b d�

�

b

FIGURE 4.12
A curved rectangular bar with radius of curvature equal to
section depth h (giving ) and a straight rectangular bar.r/c = 2

r

Assumptions:
1. The straight bar must initially be straight.

2. The beams are loaded in a plane of symmetry.

3. The material is homogeneous, and all stresses are within the elastic range.

4. The sections for which the stresses are calculated are not too close to significant

stress raisers or to regions where external loads are applied.

5. Initial plane sections remain plane after loading.

6. The bending moment is positive; that is, it tends to straighten an initially

curved beam.

Analysis:
1. For the direction of loading shown in Figure 4.12, the conventional straight-

beam formula gives

2. From Eq. 4.10,

3. From Eq. 4.9,

 so = -  

M(0.5h + 0.089761h)

(0.089761h)(bh)(1.5h)
= -  

4.380M

bh2

 si = +  

M(0.5h - 0.089761h)

(0.089761h)(bh)(0.5h)
=

9.141M

bh2

 = 0.089761h

 e = r -

A

1
 

 

 dA/r
= h -

bh

b 

L

ro

ri

 dr/r

= h -

h

ln(ro/ri)
= ha1 -

1

ln 3
b

si = +  

Mc

I
=

6M

bh2
,  so = -  

6M

bh2
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(b)(a)

Loaded "curved beam"Unloaded "curved beam"

FIGURE 4.13
Paper pad illustrating radial tension in a curved beam loaded in bending.

4. From Eq. 4.11 with Z = bh2/6,

Comment: These values are consistent with those shown for other sections in

Figure 4.11 for 

Note that the stresses dealt with in the bending of curved beams are circumfer-
ential. Additionally, radial stresses are present that are, in some cases, significant. To

visualize these, take a paper pad and bend it in an arc, as shown in Figure 4.13a.

Apply compressive forces with the thumbs and forefingers so that the sheets will not

slide. Next, carefully superimpose (with the thumbs and forefingers) a small bending

moment, as in 4.13b. Note the separation of the sheets in the center of the “beam,”

indicating the presence of radial tension (radial compression for opposite bending).

These radial stresses are small if the center portion of the beam is reasonably heavy.

But for an I beam with a thin web, for example, the radial stresses can be large

enough to cause damage—particularly if the beam is made of a brittle material or is

subjected to fatigue loading. Further information on curved-beam radial stresses is

contained in [8] and [9].

4.7 Transverse Shear Loading in Beams

Although the average transverse shear stress in beams such as the shaft in Chapter

2, Figure 2.11 is equal to V/A (i.e., 1580 lb divided by the cross-sectional area in the

critical shaft section shown in Figure 2.12), the maximum shear stress is substantial-

ly higher. We will now review an analysis of the distribution of this transverse shear

stress, with emphasis on an understanding of the basic concepts involved.

Figure 4.14 shows a beam of an arbitrary cross section that is symmetrical about

the plane of loading. It is supported at the ends and carries a concentrated load at the

center. We wish to investigate the distribution of transverse shear stress in a plane

located distance x from the left support, and at a distance y above the neutral axis. A

small square element at this location is shown in the upper right drawing. The right

and left faces of the element are subjected to shear stresses (the magnitude of which

is to be determined) with directions established by the fact that the only external

force to the left of the element is directed upward, and the resultant of external forces

r/c = 2.

Ki =

9.141

6
= 1.52 and Ko =

4.380

6
= 0.73
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4.7 ■ Transverse Shear Loading in Beams 145

on the right is downward. If only these two vectors acted on the element, it would

tend to rotate clockwise. This is prevented by the counterclockwise shear stresses

shown on the top and bottom surfaces of the element. The reality of these horizon-

tal shear stresses is easy to visualize: If one loads a book or paper tablet with the

forces in Figure 4.14, the pages slide on each other; if the plastic playing cards in a

long-unused deck are stuck together, flexing the deck with this three-point beam

loading breaks them loose. Coming back to the small element in the figure, we can

determine the magnitude of all four shear stresses by evaluating any one of them. We

now proceed to evaluate the shear stress on the bottom of the element.

Imagine two transverse saw cuts, distance dx apart, starting at the top of the

beam and continuing down just to include the sides of the square element. This

serves to isolate a segment of the beam, the bottom surface of which is the bottom

surface of the element acted upon by shear stress t. Note that the beam segment

involves the full width of the beam. Its bottom surface, acted upon by the unknown

shear stress, has a rectangular area of dimensions dx and b. Dimension b will, of

course, be different for various values of y0 (i.e., for various depths of “saw cut”).

The enlarged view in Figure 4.14 shows the forces acting on the beam segment.

A key point is that the bending stresses are slightly greater on the right side where

the bending moment is greater than on the left side by amount dM. The unknown

shear stress at the bottom must be sufficiently large to compensate for this inequality.

Because the sum of horizontal forces must be zero,

L

y=c

y=y0

 

dM y

I
 dA = tb dx

M
N.A.

�

�

M

M + dM

Enlarged view of beam segment

V

V

dA dA

y

My/I (M + dM)y/I

dA

b

y0

y c

x dx

Neutral axis

FIGURE 4.14
Analysis of transverse shear
stress distribution.
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146 Chapter 4 ■ Static Body Stresses

But dM = V dx; hence,

Solving for t gives

(4.12)

Let us now make a few important observations concerning this equation. First,

the shear stress is zero at the top (and bottom) surfaces. This is true because the saw

cuts have no depth, so there is no inequality of bending forces on the two sides to be

compensated for by shear stress at the bottom. (Looking at it another way, if the

small element in the upper right of Figure 4.14 is moved to the very top, then the top

surface of the element is part of the free surface of the beam. There is nothing in con-

tact with this surface that could impose a shear stress. If there is no shear stress on

the top of the element, the requirements of equilibrium prohibit shear stresses on any

of the other three sides.) As the saw cuts acquire increasing depth, larger and larger

surfaces are exposed to the inequality of bending stress; hence, the compensating

shear stress must increase correspondingly. Note that at the saw cut depth shown in

Figure 4.14, a great increase in shear stress would result from cutting just a little

deeper (i.e., slightly reducing y0) because the area over which the compensating

shear stress acts is rapidly decreasing (i.e., b decreases rapidly as y0 is decreased).

Note further that the maximum shear stress is experienced at the neutral axis. This

is a most gratifying situation! The maximum shear stress exists precisely where it

can best be tolerated—at the neutral axis where the bending stress is zero. At the crit-

ical extreme fibers where the bending stress is maximum, the shear stress is zero. (A

study of Eq. 4.12 indicates that for unusual sections having a width, b, at the neutral

axis substantially greater than the width near the neutral axis, the maximum shear

stress will not be at the neutral axis. However, this is seldom of significance.)

It often helps to establish concepts clearly in mind if we can visualize them on

a physical model. Figure 4.15 shows an ordinary rubber eraser ruled with a row of

elements that indicates relative shear strains (hence, stresses) when the eraser is

loaded as a beam (as shown in Figure 4.15b). If the eraser is loaded carefully, we can

see that the top and bottom elements are negligibly distorted (i.e., the initial right

angles remain right angles) while the greatest distortion in the right-angle corners

occurs in the center elements.

t =

V

Ib
 

L

y=c

y=y0

 y dA

L

y=c

y=y0

 

V dx y

I
 dA = tb dx

(a)

Marked and unloaded

(b)

Loaded as a beam

FIGURE 4.15
Transverse shear strain (hence stress) distribution shown by
rubber eraser.
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4.7 ■ Transverse Shear Loading in Beams 147

Applying Eq. 4.12 to solid round and rectangular sections, we find the parabol-

ic shear stress distributions shown in Figure 4.16, with maximum values at the neu-

tral axis for solid round sections of

(4.13)

for solid rectangular sections of

(4.14)

For a hollow round section, the stress distribution depends on the ratio of inside to

outside diameter, but for thin-wall tubing, a good approximation of the maximum

shear stress is

(4.15)

For a conventional I-beam section, width b is so much less in the web than in the

flanges that the shear stresses are much higher in the web. In fact, the shear stresses

throughout the web are often approximated by dividing the shear force, V, by the area

of the web only, with the web considered as extending the entire depth of the beam.

In the foregoing analysis the tacit assumption was made that the shear stress is

uniform across the beam width, b, at any distance, y0, from the neutral axis (see

Figure 4.14). Although not strictly correct, this assumption seldom leads to errors of

engineering significance. The variation of shear stress across the width of a beam is

treated in [8] and [11]. Another topic left to advanced texts in strength of materials

is the loading of beams whose cross sections have no axes.

A final point to be noted is that only in very short beams are the transverse shear

stresses likely to be of importance in comparison with the bending stresses. The

principle behind this generalization is illustrated in Figure 4.17, where the same

loads are shown applied to a long and short beam. Both beams have the same shear

tmax = 2V/A

tmax =
3
2 V/A

tmax =
4
3 V/A

4
3

N.A.

�av = V/A

�max =     V/A
3
2

�av = V/A

�max =     V/A

N.A.

FIGURE 4.16
Transverse shear stress dis-
tribution in solid round and
rectangular sections.

M

V

M

V

FIGURE 4.17
Effect of beam length on
bending and shear loading.
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148 Chapter 4 ■ Static Body Stresses

load and the same slope of the bending moment diagram. As the beam length

approaches zero, the bending moment (and bending stresses) approaches zero, while

the shear load and stresses remain unchanged.

SAMPLE PROBLEM 4.2 Determine Shear Stress Distribution

Determine the shear stress distribution for the beam and loading shown in

Figure 4.18. Compare this with the maximum bending stress.

M

V

X X

100

80

60

100

+40,000 N

–40,000 N

40,000 N

80,000 N

40,000 N

60

40

FIGURE 4.18
Sample Problem 4.2. Beam shear stress distribution. Note:
all dimensions are in millimeters; section properties are
A = 2400 mm2; Ix = 1840 * 106 mm4. 

SOLUTION

Known: A rectangular beam with given cross-sectional geometry has a specified

central load.

Find: Determine the shear stress distribution and the maximum bending stress.

Assumptions:
1. The beam is initially straight.

2. The beam is loaded in a plane of symmetry.

3. The shear stress in the beam is uniform across the beam width at each location

from the neutral axis.
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Schematic and Given Data:

(c)

b = 20

dA = 20dy

dA = 60dy

dx

�

40

(b)

b = 20

dA = 60dy

dx

�

10+

(a)

dA = 60dy

dx

10–

b = 60

�

FIGURE 4.19
Sample Problem 4.2 partial solution—t at three levels.

� = 7.61 MPa0

� = 22.83 MPa

� = 32.61 MPa

FIGURE 4.20
Plot of shear stress distribution—Sample Problem 4.2.

Analysis:
1. With reference to Figure 4.14 and Eq. 4.12, it is known at the outset that t = 0

at the top and bottom surfaces. This gives a start in plotting the shear stress dis-

tribution in Figure 4.20. As the imaginary parallel saw cuts (described in con-

nection with Figure 4.14) proceed down from the top to increasing depth, the

areas exposed to the slightly unbalanced bending stresses increase, thereby

causing the compensating shear stress at the bottom of the imaginary segment

to increase parabolically. This continues to a saw cut depth of 10 mm.

Figure 4.19a illustrates the imaginary segment just before the saw cuts break

through the interior surface of the section. The shear stress at this level (which

acts on bottom area 60 # dx) is calculated using Eq. 4.12 as

 =

40,000

(1.840 * 106)(60)
 (60)B y2

2
Ry=40

y=30

= 7.61 N/mm2, or 7.61 MPa

 t =

V

Ib
 

L

y=c

y=y0

 y dA =

40,000

(1.840 * 106)(60)
 

L

y=40

y=30

 y(60dy)
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2. With a slightly deeper saw cut, the inner surface is broken through, and the area

over which the shear stress acts is suddenly reduced to 20 dy, as shown in Fig-

ure 4.19b. The unbalanced bending forces acting on the segment sides are virtually

unchanged. Thus, the only term that changes in Eq. 4.12 is b, which is reduced by

a factor of 3, thereby giving a shear stress three times as high, or 22.83 MPa.

3. As the saw cut depth increases until it reaches the neutral axis, the area over which

the shear stress acts remains the same, while greater and greater imbalances build

up as additional areas dA are exposed. But, as shown in Figure 4.19c, these added

areas dA are only one-third as large as those in the top portion of the section.

Hence, the increased shear stress at the neutral axis is not as great as might at first

be expected. When using Eq. 4.12 to find t at the neutral axis, note that two inte-

grals are involved, one covering the range of y from 0 to 30 mm and the other from

30 to 40 mm. (The latter integral, of course, has already been evaluated.)

These calculations enable the shear stress plot in Figure 4.20 to be drawn.

4. By way of comparison, the maximum bending stresses occur in the top and bot-

tom surfaces of the beam, halfway along its length, where the bending moment

is highest. Here, the bending stress is computed as

Comment: Recalling that the shear stress must be zero at the exposed inner surface

of the section, it is apparent that the evenly distributed shear stress assumed in

Figure 4.19a is incorrect, and that the shear stresses in the outer supported portions

of the section at this level will be higher than the calculated value of 7.61 MPa. This

is of little importance because, to the degree that shear stresses are of concern, atten-

tion will be focused at the level just below, where the calculated value of t is three

times as high, or at the neutral axis where it is a maximum.

 = 86.96 MPa

 s =

Mc

I
=

(40,000 * 100)(40)

1.84 * 106
= 86.96 N/mm2

= 32.61 N/mm2, or 32.61 MPa

=

40,000

(1.840 * 106)(20)
(20)B y2

2
Ry=30

y=0

+ 22.83

 t =

V

Ib
 

L

y=c

y=y0

 y dA =

40,000

(1.840 * 106)(20)
c
L

y=30

y=0

 y(20 dy)+

L

y=40

y=30

 y(60 dy)d
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